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Abstract 
In this paper, an active-matrix organic light emitting diode 

(AMOLED) pixel circuit is proposed for 1000 ppi and 5.87-inch 

mobile displays with augmented and virtual reality applications. 

The proposed pixel circuit consisting of 3 thin-film transistors 

(TFTs) and 2 capacitors employs a simultaneous emission 

driving method to reduce the number of TFTs. The simulation 

results of the proposed pixel circuit showed that the emission 

current errors caused by the threshold voltage variation of 

driving TFT and crosstalk error were less than ±0.4 LSB and ±1 

LSB, respectively, over the entire gray level. Therefore, the 

proposed pixel circuit is highly suitable for AMOLED displays. 
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1. Introduction 
The organic light-emitting diode (OLED) on silicon (OLEDoS) 

displays have increasingly gained much attention for augmented 

and virtual reality (AR and VR) applications due to their high 

contrast ratio and fast optical response time [1, 2]. However, 

they have suffered from high cost because the display panels 

using the OLEDoS were fabricated on a silicon wafer [1, 2]. The 

fabrication cost of the display panels can be reduced using a 

glass or flexible substrate, which is generally employed for the 

small-area active-matrix OLED (AMOLED) displays [3-11], 

rather than a silicon wafer.  

However, the glass and flexible substrates have the electrical 

characteristic variation of low-temperature poly-crystalline 

silicon (LTPS) thin-film transistors (TFTs) caused by irregular 

grain boundaries [3]. To compensate for these electrical 

characteristic variations, the external compensation method, 

luminance adjusting algorithm, and diode-connection scheme 

have been researched [4-12]. The external compensation method 

[4-7] and luminance adjusting algorithm [8] increase the system 

cost due to the additional logic blocks and memories for sensing 

the electrical characteristic variation of the driving TFTs and 

modulating the data voltage. Therefore, the diode-connection 

schemes [9-13] have been widely used for small-area AMOLED 

displays. To drive the AMOLED displays with diode-connection 

scheme, the progressive emission (PE), block emission (BE), 

and simultaneous emission (SE) driving methods have been used 

[12, 13]. The PE and BE driving methods have a long emission 

time, but require complex pixel circuits to control the emission 

current flow through OLEDs. On the other hand, the SE driving 

method reduces the number of TFTs by modulating the voltage 

of ELVDD. 

In this paper, an AMOLED pixel circuit consisting of only 3 

TFTs and 2 capacitors is proposed for 1000 ppi mobile displays 

with AR and VR applications. The proposed pixel circuit, which 

is designed for 5.87-inch and 5120×2880 resolution, employs 

the SE driving method to reduce the number of TFTs.   
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Figure 1. (a) Schematic and (b) timing diagram of the 
proposed pixel circuit. 
 

2. Proposed Pixel Circuit 
Figure 1(a) and (b) show the schematic and timing diagram of 

the proposed pixel circuit consisting of 3 TFTs and 2 capacitors. 

T1 is a driving TFT to supply an emission current to OLED, and 

T2 and T3 are switching TFTs. T2 is designed with a dual gate 

to reduce the voltage distortion of gate node of T1, which is 

caused by the leakage current through T2. The ELVDD, COMP, 

and EM signals are globally applied to all row lines in the 

display panel. The SCAN[1] to SCAN[m] signals, where m is the 

number of row lines, are individually applied to each row line. 

The proposed pixel circuit, which employs the SE driving 

method, operates in the initial, compensation, programming, and 

emission phases, as shown in Figure 1 (b). 

In the initial phase, the SCAN[1] to SCAN[m] and COMP 

signals are high to turn on T2 and T3. Then, the gate voltage of 
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T1 (Vgate,T1) and the voltage at node A (VA) are initialized to the 

low voltage of EM signal (EMlow). Since the gate-to-source 

voltage of T1 is zero while the turn-on voltage of T1 is 0.45 V, 

T1 is turned off, and thus the short circuit current from ELVDD 

to EM does not flow. In addition, since EMlow is less than or 

equal to ELVSS, the OLED is turned off. 

In the compensation phase, the SCAN[1] to SCAN[m] signals 

maintain high to turn on T2 and the COMP signal becomes low 

to turn off T3. Also, the ELVDD signal becomes a low voltage 

(ELVDDlow), which is lower than EMlow. Then, Vgate,T1 decreases 

until it becomes ELVDDlow+Vth,T1, where Vth,T1 is the threshold 

voltage of T1. The charges stored in Cst (Qst) and Cpr (Qpr) can 

be respectively expressed as  

Qst = Cst×(ELVDDlow+Vth,T1-EMlow)                     (1) 

and 

Qpr = Cpr×(ELVDDlow+Vth,T1-Vref),                      (2) 

In the programming[1] to programming[n-1] phases, the 

SCAN[1] to SCAN[n-1] signals are progressively applied to each 

row line as a pulse signal, respectively, and the charges stored in 

Cst and Cpr remain unchanged since the gate of T1 and the anode 

of the OLED are floating.  

In the programming[n] phase, the COMP signal maintains low 

to turn off T3 and the SCAN[n] signal becomes high to turn on 

T2. Also, the data signal becomes Vdata[n]. Since Qst and Qpr are 

unchanged, Vgate,T1 can be derived as (3). 
 

(3) 

 
 

After the programming[n] phase, the SCAN[n] signal becomes 

low to turn off T2 and Vgate,T1 is unchanged due to Cst until the 

emission phase begins. Between the programming[1] and 

programming[m] phases, since the gate-to-source voltage of T1 

(VGS) and VA are smaller than Vth,T1 and turn-on voltage of the 

OLED, respectively, the OLED doesn`t emit light. Therefore, a 

switch for preventing the DATA signal from being transferred to 

Cpr is not needed, and thus the number of TFTs can be reduced.  

In the emission phase, the EM signal becomes a high voltage 

(EMhigh) to increase Vgate,T1 to be larger than Vth,T1. Then, Vgate,T1 

can be expressed as (4). 
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where ∆EM is equal to EMhigh-EMlow. Also, the emission current 

(IT1) is expressed as (5). 
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where μn, Cox, and W/L are the mobility, the gate capacitance per 

unit area, and the ratio of channel width to length of T1. 

Therefore, IT1 becomes independent of variation in Vth,T1. 

Table 1. Simulation conditions. 

Design parameter Value 

ELVDDhigh (V) 7 V 

ELVSS (V) 0 V 

W/L of T1 1.6 m/9.0 m 

W/L of switches 1.6 m/3.5 m 

Cst 20 fF 

Cpr 70 fF 

Unit pixel area 12.7 m×25.4 m 

Maximum emission 

current 
4 nA 

Target application 5.87-inch (5120×2880, pentile) 

 

3. Simulation Results 
To verify the performance of the proposed pixel circuit, the 

emission current error caused by Vth,T1 variation and crosstalk 

error of the proposed pixel circuit were simulated under the 

simulation conditions shown in Table 1. The emission current 

and crosstalk errors are expressed in LSB, which represents the 

gray difference. Figure 2 shows the simulated emission current 

error of the proposed pixel circuit, showing that the emission 

current error is less than ±0.4 LSB over the entire gray level 

when Vth,T1 variation is ±0.348 V. 
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Figure 2. Emission current error according to gray level 
when Vth,T1 variation is ±0.348 V 
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Figure 3. Input images for verifying the crosstalk error 
caused by leakage current through T2: with (a) black box 
and (b) white box patterns  
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Figure 4. Crosstalk error caused by the leakage current 
through T1 and T2 according to the gray level 
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Figure 5. (a) Unit pixel and (b) 3x3 pixel array layouts of 
the proposed pixel circuit and (c) photomicrography of unit 
pixel 
 

The crosstalk error caused by the leakage current of T1 and T2 

were verified using the input images with the black (0th gray 

level) box and white (255th gray level) box patterns as shown in 

Figure 3(a) and (b), respectively. When the same data voltage 

for a gray level is programmed to the crosstalk and background 

areas, the luminance of the crosstalk area may differ from that of 

the background area due to the leakage current through T1 and 

T2.  
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Figure 6. Schematics of (a) vertically and (b) horizontally 
adjacent pixel circuits 
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Figure 7. Input images for verifying the crosstalk error 
caused by Caav, Cad, and Caah: with (a) black box and 
(b) white box patterns 

 

Figure 4 shows the simulated crosstalk error of the proposed 

pixel circuit according to the gray levels of the background and 

crosstalk areas, showing that the crosstalk error is less than ±1 

LSB over the entire gray level.  

Since the proposed pixel circuit is designed for a high spatial 

resolution of 1000 ppi, the parasitic capacitances between the 

nodes of the adjacent pixel circuits are relatively larger than 

those of the conventional small-area AMOLED display, and 

thereby may cause a larger crosstalk error. Figure 5(a), (b), and 

(c) respectively show the layouts of the unit pixel and 3×3 pixel 

array for the proposed pixel circuit and photomicrography of 

unit pixel. Among the parasitic capacitances, Caav, Caah, and 

Cad in Figure 5(b) mainly cause the crosstalk error of the 

proposed pixel circuit.  
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Figure 8. Crosstalk error caused by Caav, Cad, and Caah, 
extracted from the layout in Figure 5(b), according to the 
gray level 
 

 

Figure 9. Demonstration of prototype panel using the 
proposed pixel circuit, which was captured using a camera 
through the magnifying glass lens in the head-mounted 
device 
 

Figure 6(a) and (b) respectively show the schematics of 

vertically and horizontally adjacent pixel circuits including Caav 

(0.16fF), and Caah (0.03 fF) and Cad (0.12 fF).Figure 7(a) and 

(b) show the input images with black and white box patterns, 

respectively, for verifying the crosstalk error caused by Caav, 

Caah, and Cad. The crosstalk occurs at the outer border of the 

box patterns due to Caav, and Caah and Cad as marked in the 

red- and blue-dotted lines, respectively. Figure 8 shows that the 

crosstalk errors are less than ±1 LSB over the entire gray level. 

Therefore, the crosstalk errors caused by the leakage current of 

T1, T2, Caav, Caah and Cad would not be perceived by human 

eyes. 

Figure 9 shows a demonstration of the prototype display panel 

using the proposed pixel circuit, which was designed for 5.87-

inch and 5120×2880 resolution. It was captured using a camera 

through the magnifying glass lens in the head-mounted device. 
 

4. Conclusion 
In this paper, an AMOLED pixel circuit, which is designed for 

5.87-inch and 1000 ppi mobile displays with AR and VR 

applications, is proposed. The proposed pixel circuit, which 

consists of only 3 TFTs and 2 capacitors, employs the SE 

driving method to reduce the number of TFTs. The simulation 

results of the proposed pixel circuit show that the emission 

current and crosstalk errors were less than ±0.4 LSB and ±1 

LSB, respectively. Therefore, the proposed pixel circuit is 

highly suitable for AMOLED displays requiring small area and 

high spatial resolution. 
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